P-SC/ wave propagation in heterogeneous media: Velocity-stress finite-difference method
نویسنده
چکیده
I present a finite-difference method for modeling P-SV wave propagation in heterogeneous media. This is an extension of the method I previously proposed for modeling SH-wave propagation by using velocity and stress in a discrete grid. The two components of the velocity cannot be defined at the same node for a complete staggered grid: the stability condition and the P-wave phase velocity dispersion curve do not depend on the Poisson’s ratio, while the S-wave phase velocity dispersion curve behavior is rather insensitive to the Poisson’s ratio. Therefore, the same code used for elastic media can be used for liquid media, where S-wave velocity goes to zero, and no special treatment is needed for a liquid-solid interface. Typical physical phenomena arising with P-SV modeling, such as surface waves, are in agreement with analytical results. The weatheredlayer and corner-edge models show in seismograms the same converted phases obtained by previous authors. This method gives stable results for step discontinuities, as shown for a liquid layer above an elastic half-space. The head wave preserves the correct amplitude. Finally, the corner-edge model illustrates a more complex geometry for the liquid-solid interface. As the Poisson’s ratio v increases from 0.25 to 0.5, the shear converted phases are removed from seismograms and from the time section of the wave field.
منابع مشابه
Influences of Heterogeneities and Initial Stresses on the Propagation of Love-Type Waves in a Transversely Isotropic Layer Over an Inhomogeneous Half-Space
In the present paper, we are contemplating the influences of heterogeneities and pre-stresses on the propagation of Love-type waves in an initially stressed heterogeneous transversely isotropic layer of finite thickness lying over an inhomogeneous half space. The material constants and pre-stress have been taken as space dependent and arbitrary functions of depth in the respective media. To sim...
متن کاملGeneration of Love Wave in a Media with Temperature Dependent Properties Over a Heterogeneous Substratum
The present paper deals with the generation of Love waves in a layer of finite thickness over an initially stressed heterogeneous semi-infinite media. The rigidity and density of the layer are functions of temperature, i.e. they are temperature dependent. The lower substratum is an initially stressed medium and its rigidity and density vary linearly with the depth. The frequency relation of Lo...
متن کاملTorsional Surface Wave Propagation in Anisotropic Layer Sandwiched Between Heterogeneous Half-Space
The present paper studies the possibility of propagation of torsional surface waves in an inhomogeneous anisotropic layer lying between two heterogeneous half-spaces (upper and lower half-space). Both the half-spaces are assumed to be under compressive initial stress. The study reveals that under the assumed conditions, a torsional surface wave propagates in the medium. The dispersion relation ...
متن کاملDispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity
The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کامل